
TECHNICAL NOTE 

The e f f e c t  of  channe l ing  on heat  
t rans fe r  across a hor izonta l  layer 
of  a porous m e d i u m  
D .  A .  N i e l d  

Department of Engineering Science, Universi ty of Auckland, Auckland, New Zealand 

Kazmierczak and Muley (1994) have reported the results of 
experiments on heat transfer across a horizontal layer of a 
porous medium consisting of a matrix of spherical glass beads 
saturated with water. They observed that the presence of a thin 
layer of clear fluid just below the rigid top boundary led to a 
substantial increase in heat transfer. They did not attempt a 
quantitative comparison with the available theoretical material. 
This is done in the present note. The comparison is not 
straightforward because the published papers involving 
numerical calculations of heat transfer (Catton 1985; 
Poulikakos et al. 1986; Poulikakos 1985) have reported results 
for parameter values that are not pertinent to the latest 
experiments. An indirect comparison, however, is possible. 

Figure 4 of Kazmierczak and Muley (1994) indicates that in 
the range of Rayleigh number Ra from 200 to 1000 the Nusselt 
number Nu is approximately a linear function Ra, both in the 
absence and presence of the clear layer, in accordance with the 
approximate theoretical relationship that is expected to hold, 
namely, 

Nu = Ra/Ra¢ 

where Ra~ is the critical value of Ra. With the clear layer 
present, a given value of the Nusselt number is attained at a 
Ra value that is about 0.75 of the corresponding value with the 
clear layer absent. This suggests that the clear layer has the 
effect of lowering Ra~ by about 25 percent. 

The literature reviews by Prasad (1991) and Nield and Bejan 
(1992) contain references to a number of papers in which the 
value of Ra~ is predicted, but again many of these treat 
configurations and parameter ranges that are different from 
those in the latest experiments. In these, the depth ratio 
d~ /d f=30  (so dt/dm=O.03), the Darcy number 3 2 =  
3.96 x 10 -7 (so 6 = 6.3 x 10-4), the thermal conductivity ratio 
k J k r  = 1.5, and A = 0.2. The conductivity ratio has been 
estimated from the formula k= = ~kf + (1 - ~b)k~, where the 
porosity ~ = 0.37. Here the subscripts m, f, and s refer to the 
medium, fluid, and solid, respectively. In terms of the 
permeability K and the Beavers-Joseph constant ~ (taken as 
0.1), 6 = K1/2/d m and A = Kl/2/~tdf, where here df = 0.004 m, 
d m = 0.123 m and K = 6.38 x 10 -9 m 2. Estimates based on the 
analytical formulas given by Nield (1977, 1983) and Pillatsis et 
al. (1987) indicate that, for the case of a thin fluid layer, Rac 
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does not depend strongly on km/k f (when that is close to unity) 
nor on A; rather, the important parameters are d J d f  and 6. 

Chen and Chen (1988) studied the configuration of interest, 
that of a fluid layer overlying a porous medium layer, with rigid 
conducting boundaries. They performed calculations for the 
case kf/km = 0.7 and 6 = 0.002. They reported the following 
results for the pair (df/dm, Ra=): (0.001, 39.422), (0.01, 36.702), 
and (0.04, 24.772). This indicates that for df/d m = 0.03 the 
predicted reduction in Rac is about 30 percent. In the latest 
experiments, the value of 6 is about three times smaller, and 
one would anticipate a larger reduction in Rac. Results for a 
range of values of 6 are reported by Taslim and Narusawa 
(1989). Their Figure 2 is here reproduced as Figure 1. These 
results pertain to a porous layer of depth 2d m sandwiched 
between two fluid layers, each of depth dr, the whole sandwich 
lying between rigid conducting boundaries. The figure shows 
that as d~/df varies, the Ram=-versus-6 curve more or less retains 
its shape but is displaced horizontally. Measurements made o n  

the curves indicate that for a given value of Ramc, 6 varies with 
dm/d f in a multiplicative manner (their logarithms are linearly 
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Figure 1 (Reproduction of Figure 2 of Taslim and Narusawa 
(1989)). Variation of the critical Rayleigh-Darcy number Ram¢ and 
critical wavenumber ar~ with 5, for the case of a porous medium 
layer of depth 2din sandwiched between two fluid layers, each of 
depth dr. The horizontal broken line indicates the porous layer limit 
(Ram¢ = n 2 = 9.8696, a,~ = n/2 = 1.5708). The continuous curves 
correspond to rigid top and bottom boundaries; the slashed curves 
correspond to free top and bottom boundaries (A) din~dr -- 500; 
(B) dm/d f = 100; (C) dm/d f = 10 
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related): if d J d f  is increased by a factor of 10, then 6 is 
decreased by a factor of 45. This means that if dm/df is increased 
from 30 to 100, then the corresponding 3 is decreased by a 
factor of 6.7. 

We are interested in the case dm/df = 30, 3 = 6.3 x 10 -4. 
The value of Ramc for this case is about the same as that for 
din/de = 100, 3 = 9.4 x 10-5, and reading from the solid curve 
B we find that Ram¢ = 4 approximately. In the absence of the 
two clear fluid layers, Ram¢ = n 2 = 9.8696. The two clear fluid 
layers cause Ram~ to be reduced by 60 percent. It is plausible 
that a single clear fluid layer would reduce the critical Rayleigh 
number by 30 percent. This is just a little larger than the 25 
percent that we estimated from the observed heat transfer 
results of Kazmierczak and Muley (1994). 

There is a further consideration. Kazmierczak and Muley 
(1994) eliminated the clear fluid layer in their later experiments 
by adding more glass beads. This addition effectively increased 
the depth of the porous medium from about 0.123 m to 0.127 m. 
The Ram¢ as defined by Taslim and Narusawa (1989) is 
proportional to the depth of the porous layer. This means that 
for a proper comparison, the Ra values for later experiments 
of Kazmierczak and Muley (1994) should be decreased by 
about 3 percent. This has the effect of reducing the observed 
change in heat transfer by that amount. And there is one more 
complication. If the clear fluid layer is a consequence of settling 
of the glass spheres, the effective porosity, and hence the 
permeability calculated from the Ergun form of the Kozeny 
equation, and hence the effective Rayleigh number, needs to be 
adjusted. This complication does not significantly affect the 
above argument, which is primarily based on the ratio of 
Rayleigh numbers, but it would affect a precise comparison 
because K enters into the parameters 6 and A as well as Ra. 

In summary, the magnitude of the observed change in heat 
transfer observed by Kazmierczak and Muley (1994) is 
consistent with the predictions of the available theoretical 
work. Further experiments, extending the Rayleigh number 

range down to the critical value, would be welcome. So would 
new calculations made explicitly for the parameter values 
pertaining to the experiments. 
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